Connect with us

Gorontalo Utara

Boolean Algebra Expression Laws, Rules, Theorems and Solved Examples

Published

on

There are some set of logical expressions which we accept as true and upon which we can build a set of useful theorems. These sets of logical expressions are known as Axioms or postulates of Boolean Algebra. An axiom is nothing more than the definition of three basic logic operations (AND, OR and NOT). All axioms defined in boolean algebra are the results of an operation that is performed by a logical gate.

In contrast, in a list of some but not all of the same laws, there could have been Boolean laws that did not follow from those on the list, and moreover there would have been models of the listed laws that were not Boolean algebras. These generalized expressions are very important as they are used to simplify many Boolean Functions and expressions. Minimizing the boolean function is useful in eliminating variables and Gate Level Minimization. The theorem states that the complement of the OR operation between two or more variables is equivalent to the AND operation of their complements.

\(B\) is
unique up to \(A\)-isomorphism, and is called the completion of
\(A\). If \(f\) is a homomorphism from a BA \(A\) into a complete BA
\(B\), and if \(A\) is a subalgebra https://1investing.in/ of \(C\), then \(f\) can be
extended to a homomorphism of \(C\) into \(B\). Another general algebraic notion
which applies to Boolean algebras is the notion of a free
algebra.

Any more-or-less arbitrarily chosen system of axioms is the basis of some mathematical theory, but such an arbitrary axiomatic system will not necessarily be free of contradictions, and even if it is, it is not likely to shed light on anything. Informally, this infinite set of axioms states that there are infinitely many different items. However, the concept of an infinite set cannot be defined within the system — let alone the cardinality of such as set. In electrical and electronic circuits, Boolean algebra is used to simplify and analyze the logical or digital circuits. The other theorems in Boolean algebra are complementary theorem, duality theorem, transposition theorem, redundancy theorem and so on. All these theorems are used to simplify the given Boolean expression.

Furthermore, Boolean algebras can then be defined as the models of these axioms as treated in § Boolean algebras. The equivalent logical operators to these operations are given below. Boolean algebra is a type of algebra that is created by operating the binary system. In the year 1854, George Boole, an English mathematician, proposed this algebra. This is a variant of Aristotle’s propositional logic that uses the symbols 0 and 1, or True and False.

Mathematical methods developed to some degree of sophistication in ancient Egypt, Babylon, India, and China, apparently without employing the axiomatic method. Embark on a transformative journey towards GATE success by choosing Data Science & AI as your second paper choice with our specialized course. If you find yourself lost in the vast landscape of the GATE syllabus, our program is the compass you need. Boolean Algebra also called Logical Algebra is a branch of mathematics that deals with Boolean Varaibles such as, 0 and 1. Of course, it is possible to code more than two symbols in any given medium.

  1. The shading indicates the value of the operation for each combination of regions, with dark denoting 1 and light 0 (some authors use the opposite convention).
  2. However, we could put a circle for x in those boxes, in which case each would denote a function of one argument, x, which returns the same value independently of x, called a constant function.
  3. This result depends on the Boolean prime ideal theorem, a choice principle slightly weaker than the axiom of choice.
  4. At times, it is not even clear which collection of axioms a proof appeals to.

The system has at least two different models – one is the natural numbers (isomorphic to any other countably infinite set), and another is the real numbers (isomorphic to any other set with the cardinality of the continuum). In fact, it has an infinite number of models, one for each cardinality of an infinite set. However, axiomatic definition of boolean algebra the property distinguishing these models is their cardinality — a property which cannot be defined within the system. A model for an axiomatic system is a well-defined set, which assigns meaning for the undefined terms presented in the system, in a manner that is correct with the relations defined in the system.

Claude Shannon formally proved such behavior was logically equivalent to Boolean algebra in his 1937 master’s thesis, A Symbolic Analysis of Relay and Switching Circuits. The triangle denotes the operation that simply copies the input to the output; the small circle on the output denotes the actual inversion complementing the input. The convention of putting such a circle on any port means that the signal passing through this port is complemented on the way through, whether it is an input or output port. When values and operations can be paired up in a way that leaves everything important unchanged when all pairs are switched simultaneously, the members of each pair are called dual to each other. The duality principle, also called De Morgan duality, asserts that Boolean algebra is unchanged when all dual pairs are interchanged. Writing down further laws of Boolean algebra cannot give rise to any new consequences of these axioms, nor can it rule out any model of them.

Commutative Law

Boolean algebra is the category of algebra in which the variable’s values are the truth values, true and false, ordinarily denoted 1 and 0 respectively. It is used to analyze and simplify digital circuits or digital gates. It has been fundamental in the development of digital electronics and is provided for in all modern programming languages. The term “Boolean algebra” honors George Boole (1815–1864), a self-educated English mathematician. Boole’s formulation differs from that described above in some important respects.

Complementation Laws

This describes the scenario where the undefined terms of a first axiom system are provided definitions from a second, such that the axioms of the first are theorems of the second. The second law states that the complement of the sum of variables is equal to the product of their individual complements of a variable. The first law states that the complement of the product of the variables is equal to the sum of their individual complements of a variable. This means that if you want to find the complement of the OR operation of two or more variables, you can take the complement of each variable individually and then use the AND operation between their complements. This means that if you want to find the complement of the AND operation of two or more variables, you can take the complement of each variable individually and then use the OR operation between their complements. There are two basic theorems of great importance in Boolean Algebra, which are De Morgan’s First Laws, and De Morgan’s Second Laws.

Boolean algebra (structure)

Instead of showing that the Boolean laws are satisfied, we can instead postulate a set X, two binary operations on X, and one unary operation, and require that those operations satisfy the laws of Boolean algebra. The elements of X need not be bit vectors or subsets but can be anything at all. The closely related model of computation known as a Boolean circuit relates time complexity (of an algorithm) to circuit complexity. The theory of Boolean algebras was founded in 1847 by Boole, who considered it a form of ‘calculus’ adequate for the study of logic.

Boolean algebra as an axiomatic algebraic structure in the modern axiomatic sense begins with a 1904 paper by Edward V. Huntington. Boolean algebra came of age as serious mathematics with the work of Marshall Stone in the 1930s, and with Garrett Birkhoff’s 1940 Lattice Theory. In the 1960s, Paul Cohen, Dana Scott, and others found deep new results in mathematical logic and axiomatic set theory using offshoots of Boolean algebra, namely forcing and Boolean-valued models.

For example, group theory was first put on an axiomatic basis towards the end of that century. Once the axioms were clarified (that inverse elements should be required, for example), the subject could proceed autonomously, without reference to the transformation group origins of those studies. A truth table represents all the combinations of input values and outputs in a tabular manner. All the possibilities of the input and output are shown in it and hence the name truth table. In logic problems, truth tables are commonly used to represent various cases.

OR Laws

The theorem states that the complement of the AND operation between two or more variables is equivalent to the OR operation of their complements. It is used to simplify logical circuits that are the backbone of modern technology. The inverse of the boolean variable is called the complement of the variable. A function of the Boolean Algebra that is formed by the use of Boolean variables and Boolean operators is called the Boolean function.

Logic sentences that can be expressed in classical propositional calculus have an equivalent expression in Boolean algebra. Thus, Boolean logic is sometimes used to denote propositional calculus performed in this way.[14][15][16] Boolean algebra is not sufficient to capture logic formulas using quantifiers, like those from first order logic. The two important theorems which are extremely used in Boolean algebra are De Morgan’s First law and De Morgan’s second law.

Using an axiomatic proof (i.e. using only the basic axioms and theorems of Boolean algebra).However, no matter what I do, I can’t seem to get things to line up correctly. Algebra being a fundamental tool in any area amenable to mathematical treatment, these considerations combine to make the algebra of two values of fundamental importance to computer hardware, mathematical logic, and set theory. That is, up to isomorphism, abstract and concrete Boolean algebras are the same thing. This result depends on the Boolean prime ideal theorem, a choice principle slightly weaker than the axiom of choice. This strong relationship implies a weaker result strengthening the observation in the previous subsection to the following easy consequence of representability.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Gorontalo Utara

Bongkar! Mahfud MD Jelaskan Solusi Pemerintahan Agar Roda Negara Kembali Lancar

Published

on

Jakarta – Prof. Mahfud MD mengulas secara mendalam situasi demonstrasi yang sempat mencekam di berbagai kota Indonesia pada akhir Agustus 2025. Mahfud MD menegaskan bahwa walaupun kekerasan telah berhasil diredam terutama berkat langkah tegas Presiden Prabowo, masalah mendasar yang menjadi pemicu demonstrasi belum terselesaikan.

Demo yang awalnya dipicu oleh kebijakan pemerintah ini melahirkan kerusuhan hebat, termasuk pembakaran gedung DPR, korban jiwa, dan kerusakan harta benda. Situasi mulai membaik sejak Minggu malam dengan belum ada demonstrasi besar menggantikan.

Masalah utama yang belum dijawab adalah akumulasi berbagai persoalan sosial dan ekonomi, seperti tingginya angka PHK dan pengangguran, serta persoalan pajak dan pungutan yang memicu ketidakpuasan masyarakat. Penegakan hukum yang lemah, praktik kriminalisasi, politisasi hukum, serta kasus korupsi yang tidak jelas penyelesaiannya semakin memperparah kepercayaan publik terhadap pemerintah.

dikutip dari podcast Terus Terang bersama Mahfud MD, dia menyatakan bahwa penegakan hukum yang masih kacau membuat sulitnya mencari investor karena reputasi hukum yang buruk. Ia juga menyoroti peran ormas Islam yang dianggap telah jauh dari rakyat dan terlalu dekat dengan pemerintah sehingga tidak menjalankan perannya sebagai pemandu moral masyarakat secara tepat.

Pentingnya reformasi KPK dan sinergi aparatur negara dalam penegakan hukum juga menjadi sorotan utama untuk membangun pemerintahan yang profesional dan bersih. Selain itu, Mahfud MD mengkritik kabinet yang dianggap terlalu besar dan banyak pejabat bermasalah hukum, sehingga melemahkan kerja pemerintah.

Mahfud MD mengingatkan pentingnya kepemimpinan yang berani menerima kritik jujur dan penegakan hukum yang tegas agar negara ini bisa selamat dari masalah panjang yang melekat dalam pemerintahan.

Dalam kesempatan itu, Mahfud MD berbagi pengalamannya berani menyampaikan kritik langsung kepada Presiden Jokowi terkait sejumlah kasus besar seperti BLBI, menunjukkan pentingnya keberanian menyuarakan kebenaran demi kebaikan bangsa.

Ia mengharapkan Presiden Prabowo dapat mengambil langkah cepat menyelesaikan masalah hukum dan evaluasi kabinet untuk memenuhi aspirasi masyarakat agar roda pemerintahan kembali berjalan efektif.

Selain itu, Mahfud MD juga menanggapi sikap pemerintah terhadap demonstrasi, menegaskan bahwa TNI dan Polri harus bertindak tegas sesuai hukum namun tetap menghormati kebebasan berpendapat di Indonesia.

Continue Reading

Gorontalo Utara

Polda Gorontalo Turunkan 800 Personel Amankan Tiga Titik Aksi Mahasiswa

Published

on

Gorontalo – Kericuhan terjadi di kawasan Simpang Lima, Kota Gorontalo, saat aparat kepolisian membubarkan aksi mahasiswa yang menuntut kehadiran tiga unsur pimpinan daerah: Gubernur Gorontalo, Kapolda Gorontalo, dan Ketua DPRD.

Massa aksi yang kecewa karena tuntutannya tidak dipenuhi melakukan pembakaran ban dan merusak sejumlah fasilitas, termasuk Pos Satuan Lalu Lintas (Satlantas) di sekitar lokasi. Aparat kepolisian kemudian membubarkan massa secara paksa karena aksi dinilai sudah bersifat anarkis.

Kepala Bidang Humas Polda Gorontalo, AKBP Desmont Harjendro A.P., S.I.K., M.T., menegaskan bahwa tindakan pembubaran dilakukan sesuai prosedur. Menurutnya, aparat sebelumnya telah mengingatkan bahwa batas waktu unjuk rasa hanya sampai pukul 17.00–18.00 WITA.

“Kita bubarkan sesuai SOP karena sudah melewati batas waktu. Aparat juga sudah melakukan negosiasi, tetapi massa menolak membubarkan diri,” ujar Desmont.

Ia menambahkan, sejumlah mahasiswa diamankan karena diduga menjadi provokator. “Ada beberapa yang kami amankan. Nanti akan dilakukan pemeriksaan lebih lanjut,” jelasnya.

Lebih lanjut, Desmont mengungkapkan bahwa aksi mahasiswa hari ini berlangsung di tiga titik: Kantor DPRD Gorontalo, Bundaran Saronde, dan Simpang Lima. Untuk pengamanan, Polda Gorontalo menurunkan sekitar 800 personel gabungan.

Berdasarkan informasi yang dihimpun Barakati.id, sebanyak 14 mahasiswa diamankan, tiga di antaranya telah dibebaskan. Berikut daftar nama mahasiswa tersebut:

  • Ditangkap

    • Muhamad Arif Hidayatullah Bina – DPD IMM Gorontalo

    • Andi Taufik – IAIN Sultan Amai Gorontalo

    • Zulfebriadi Hariji – Universitas Muhammadiyah Gorontalo

    • Moh. Fachry Botutihe – UNG, Fakultas MIPA

    • All Sadiq Oli’i – UNG

    • Jefrianto Rahim – UNG, Fakultas Ilmu Sosial

    • Fikran Pango – Universitas Muhammadiyah Gorontalo

    • Moh. Fais Pontoh – UNG, Fakultas Pertanian

    • Moh. Umar – UNG, Fakultas Teknik

    • Raihan Liputo – UNG, Fakultas Teknik

    • Moh. Fajri – UNG, Fakultas MIPA

  • Dibebaskan

    • Zakaria

    • Masru Punu – IAIN Gorontalo

    • Ramadan

Continue Reading

Gorontalo Utara

Presiden Prabowo Umumkan: DPR Hapus Tunjangan & Moratorium Kunker keluar negeri

Published

on

Jakarta, 31 Agustus 2025 – Presiden Prabowo Subianto menyampaikan keputusan penting usai mengundang para pimpinan partai politik, pimpinan DPR, MPR, dan DPD di Istana Kepresidenan. Ia menegaskan bahwa DPR RI akan mencabut sejumlah kebijakan yang menuai kritik publik — antara lain menghapus tunjangan besar bagi anggota dewan serta mencabut moratorium kunjungan kerja ke luar negeri.

Langkah tersebut diambil sebagai respons langsung terhadap rantai aspirasi publik yang dipicu oleh demonstrasi besar-besaran, di mana masyarakat protes berkelanjutan atas tunjangan mewah anggota DPR. Demonstrasi ini sempat memicu kerusuhan, pembakaran fasilitas publik, serta kerusakan properti hingga korban jiwa.

Selain itu, Prabowo juga menerima kabar dari ketua umum partai-partai politik bahwa sejumlah anggota DPR telah dinonaktifkan karena menyampaikan pernyataan yang tidak tepat dan dinilai melukai hati rakyat. Sosok-sosok seperti Ahmad Sahroni dan Nafa Urbach dari NasDem serta Eko Patrio dan Uya Kuya dari PAN disebut sebagai contoh nyata langkah tegas partai terhadap wakil rakyat yang kontroversial.

Melalui pengumuman ini, pemerintah berharap DPR bisa lebih fokus pada tugas legislasi dan mengembalikan kepercayaan publik. Keputusan ini juga menjadi sinyal bahwa suara masyarakat—terutama dalam situasi demokrasi yang kritis—dapat direspons secara nyata oleh lembaga negara.

Continue Reading

Facebook

Terpopuler